All Solutions

Important

Saturday, December 2, 2023

50 Numericals on Electricity for Class 10 with solutions PDF

In this post, we are going to provide numericals on electricity for class 10 with solutions. These numericals on electricity are important and are always asked in the Class 10 CBSE, RBSE, and other board examinations.





Numerical Problems based on Ohm’s law 


To solve the numericals on electricity based on Ohm’s law , we will use the following formulas

 

   V=IR


  `R=V/I` 


  `I=V/R` 


  Where 

  V = Voltage (Potential difference) = volt

  R = Resistance – Ohm (Ω)

  I = Electric current – Ampere

 

     1. When a cell of 1.5 volts is applied in a circuit, a current of 0.5 ampere flows through it. Calculate the resistance of the circuit.


  Given values

  Voltage (V) = 1.5  volt

  Current (I) = 0.5 A

  Resistance (R) = ?


  Solution


   `R=frac\{V}{I}` 


  Put the values in the formula of resistance


   `R=frac\{1.5}{0.5}`=3 Ohm 


   

   2. How much current will an electric bulb draw from a 220-volt source. If the resistance of the filament is 1200 ohm?



  Given values

  Voltage (V) = 220 volt

  Resistance (R) = 1200 Ohm

  Current (I) = ?


  Solution


   `I=frac\{V}{R}` 



  `I=frac\{220}{1200}` =0.183A 

 


   3. What is the potential difference between the ends of a conductor of 15 Ohm resistance when a current of 2 ampere flows through it.


  Given values

  Resistance  (R) = 15 Ohm

  Electric current (I ) = 2 A

  Potential difference (V) =?


  Solution


  V=IR 


  V=2 ×15=30 volt 


4. A heater draws a current of 5 A when it is connected to 110 volts. What current will the heater draw when it is connected to 220 volts.


  Given values

  Current (I1) = 5 A

  Voltage (V1) = 110 volts

  Voltage (V2) = 220 volts

  Current (I2) =?


  Solution


  According to Ohm’s law


  V=IR


   `R=frac\{110}{5}`=22 Ohm 


  When the voltage is 220 volt


  The current will be 


   `I_2=frac\{220}{22}`=10 A 


5. Calculate the potential difference required across a conductor of resistance 6 ohm to make a current of 2.5 A flow through it.


  Given values

  Resistance (R) = 6 ohm

  Current (I) = 2.5 A

  Potential difference (V) =?


  Solution

 

  V=IR 


  V=2.5× 6=15 volt 


Numerical Problems Based on Resistance and Resistivity


We will use the following formulas to solve the numericals on electricity based on resistance and resistivity


   `R=ρ frac\{l}{A}`


  Where 

  R = Resistance -Ohm

  ρ =  Resistivity -Ohm m

  l  = length – m

 A  = area of cross-section -`m^2`


  6. Calculate the resistance of a copper wire of length 30 cm and the area of cross-section 3× 10-4 m2. The resistivity of copper is 1.7 × 10-8 ohm ×m.


  Given values

  Length of wire (l) = 30 cm = 0.3m

  Area of cross-section (A) = 3× 10-4 m2

  Resistivity of copper (p) = 1.7 × 10-8 ohm ×m.

  Resistance (R ) =?


  Solution


  `R=ρ frac\{l}{A}`

 

 `R=1.7 × 10^-8  × frac\{0.3}{3× 10^-4 }`

 

 `R=(0.51× 10^(-8))/(3 × 10^(-4) )` 


 `R=(0.17× 10^(-8))/( 10^(-4) )` 


 `R=0.17×10^(-8)×10^4` 


 `R=0.17×10^(-4)`  Ohm 


   7. Calculate the resistivity of wire having length 1 m and area of cross section 1.20 × 10-6 m2, if its resistance is 0.013 ohm.


  Given values

  Area of cross-section (A) = 1.20 × 10-6 m2

  Length (l) = 1m

  Resistance (R) =0.013 ohm

  Resistivity (ρ ) =?


  Solution 


  `R=ρ frac\{l}{A}`


 Now put the values in the formula 


  `0.013=ρ frac{1}{1.20 × 10^-6}` 


  `ρ= 0.013×frac\{1.20  ×10^-6}{1}` 


  `ρ=1.56 × 10^-8` ohm m 



   8. Calculate the area of cross section of a wire of 1 m and resistance 25 ohm, if the resistivity of material of the wire is 1.84 ×10-6 ohm m.


  Given values

  Length (l) = 1m

  Resistance (R) = 25 ohm

  Resistivity (ρ ) = 1.84 ×10-6 ohm m

  Area of cross-section (A) =?


  Solution 


   `R=ρ frac\{l}{A}`


  `25=1.84×10^-6×frac\{1}{A}` 


  `A=1.84×10^(-6)×frac\{1}{25 }`   


  `A=7.36 × 10^-8  m^2`   




  9.1 m long wire with resistance 0.85 ohm and diameter 0.2 mm, what will be the resistivity of the metal  at 20℃.


  Given values

  Length (l) =1m

  Resistance (R)= 0.85 ohm

  Diameter (d) =0.2 mm= 2 ×10-4m

  Radius (r) = d/2 =  1 ×10-4m

  Area of cross-section (A) =? (`πr^2`)


  Solution 


   `R=ρ frac\{l}{A}`


  `R=ρ frac\{l}{πr^2} ` 


  `0.85=ρfrac\{ 7}{22×(1 × 10^(-4))^2 }` 


  `ρ=  frac\{0.85×22}{7×10^-8}` 


  `ρ= 2.67×10^-8` ohm m 




Numerical Problems based on the Combination of Resistances


Now we will solve the numericals based on a combination of resistance. The following formulas can be used to find the equivalent or total resistance of the combination.


  `R= R_(1 )+ R_2+R_3+⋯R_n`


  `1/R=  1/R_1 +1/R_2 +1/R_3 +⋯1/R_n `


  Where 


  `R_(1 )  ,R_2,R_3`  and `R_n` are different resistances


  R = total resistance of the combination


   10. Three resistances of 5 ohm,10 ohm, and 15 ohm are connected in series, find the total resistance.


  Given value

  R1= 5 ohm

  R2= 10 ohm

  R3= 15 ohm

  R= ?

  Solution 


  `R= R_(1 )+ R_2+R_3`


   R= 5+ 10+15 = 30 ohm


   11. Three resistances of 5 ohm,10 ohm, and 15 ohm are connected in parallel, find the total resistance.


  Given values

  R1= 5 ohm

 R2= 10 ohm

 R3= 15 ohm

 R= ?


  Solution


  `1/R=  1/R_1 +1/R_2 +1/R_3` 


  `1/R=  1/5+1/10+1/15`



  `1/R=  (6+3+2 )/30=11/30`  


  `1/R=11/30`  


  `R=30/11=2.72` ohm


   12. Three resistances of 5 ohm,10 ohm, and 15 ohm are connected in series, and the system is connected to 90-volt battery. What will the current flow in the circuit?


  Given values

  R1= 5 ohm

  R2= 10 ohm

  R3= 15 ohm

  V= 90 volt

  I =?


  Solution 


  `I=V/R`

 

We don’t have the value of ‘ R’ so first we will find the value


  R= 5+ 10+15=30 ohm


 `I=V/R=  90/(30 )`=3 A 

 

  13. Three resistances of 5 ohm,10 ohm, and 15 ohm are connected in parallel combination and the circuit is connected to a 100-volt battery. Find the electric current flowing in each of the resistances.


  Given values

  R1= 5 ohm

  R2= 10 ohm

 R3= 15 ohm

 V= 100 volt

 I1 = ?

 I2= ?

 I3= ?


 Solution 


  `I_1=V/R_1` 


  `I_1=100/5=20 A`


  `I_2=V/R_2 `


  `I_2=100/10=10 A`


  `I_3=V/R_3` 


  `I_3=100/15=6.66 A`


(Note : Current in all resistors is different in the parallel combination.)


  14. Three resistors of 5 ohm,10 ohm, and 15 ohm are connected in series combination, and a 10 ampere current is flowing in the system when connected with 110 Volt. Find the potential difference between the two ends of each resistor.

     

  Given values

  R1= 5 ohm

  R2= 10 ohm

  R3= 15 ohm

  V= 110 volt

  I =10 A

  V1 = ?

  V2= ?

  V3= ?


  Solution 


   `V_1=IR_1`


  `V_1=10×5`=50 volt


  `V_2=IR_2`


  `V_2=10×10`=100 volt


  `V_3=IR_3`


   `V_3=10×15`=150 volt



  15. Three resistances of 2 ohm, 3 ohm, and 6 ohm are connected in series and then in parallel. Find the total resistance in both arrangements.


  Given values

  R1= 2 ohm

 R2= 3 ohm

 R3= 6 ohm

 R = Total resistance =?


  Solution 


 i. For series combination


  `R= R_(1 )+ R_2+R_3`


   R= 2 + 3 +6 =11 ohm


ii.For parallel combination


   `1/R=  1/R_1 +1/R_2 +1/R_3` 


   `1/R=  1/2+1/3+1/6`


    `1/R=  (6+4+2 )/12  =  12/12`


    R= 1 ohm


  16. A 18 Volt battery is connected across a lamp whose resistance is 50 ohm, through a variable resistor. If the current flowing through the circuit is 0.3 A. Calculate the value of resistance used from the variable resistor.


   Given values


   Voltage (V) = 18 volt

  Current (I) = 0.3 A

  Resistance of bulb (r) = 50 ohm

  R1 = resistance form variable resistor =?


  Solution


Let R1 be the resistance from a variable resistor that is used


Both R1 and r are is series combination so the resultant resistance is


   R= R1 + r


  According to Ohm’s law


  V=IR


  15 = 0.3 × (R1 + r)


  `R1 + 50 = frac\{18}{0.3}` = 60


  R1 = 60 -50 = 10 ohm


Numerical Problems Based on the Circuit diagrams


To solve the numerical problems based on the circuit diagrams, we will use the formulas given above.


  17.Calculate the total resistance of the following circuit.

     


       Given values 

      `R_1`= 5 ohm

      `R_2`= 10 ohm

      `R_3`= 20 ohm

       R =?


      Solution 


   All resistances in the given circuit are connected in the series so total resistance

 

       `R= R_(1 )+ R_2+R_3`


       R= 5+ 10+20=35 ohm

  

   18. Calculate the total resistance in the given circuit

     


       Given values 


       `R_1`= 5 ohm

      `R_2`= 10 ohm

      `R_3`= 20 ohm

       R =?


      Solution


      `1/R=  1/R_1 +1/R_2 +1/R_3`

  

     `1/R=  1/5+1/10+1/20`


     `1/R=  (4+2+1)/20=7/20`


     `R=  20/7=2.85 ohm`


  19. You have been given the following circuit diagram.

       


    

Find the following

i.  Electric current through each resistor

ii. Total resistance

iii. Total current


    Given values

    `R_1`= 5 ohm

    `R_2`= 10 ohm

    `R_3`= 30 ohm

     V = 6 volt

     R =?

     I1= ? , I2= ?  and I3 =?

    I =?


       Solution 

    All the resistors are connected in parallel combination


      i.Current through each resistor


      `V=I_1 R_1`


      `6=I_1×5`


      `I_1=  6/5=1.2 A`

  

      `V=I_2 R_2`


       `6=I_2×10`


        `I_2=  6/10=0.6 A`


        `V=I_3 R_3`


        ` 6=I_3×30`


        `I_3=  6/30=0.2 A`


      ii. Total resistance (R) 


      `1/R=  1/R_1 +1/R_2 +1/R_3 `


      `1/R=  1/5+1/10+1/30`

  

       `1/R=  (6 +3 +1)/30=  10/30`


        `R=  30/10=3 Ohm`


     iii. Total current (I) 

     

       `V=IR`

  

        6=I×3

 

      `I=  6/3=2 A`


  20. Find the equivalent resistance in the given circuit and the current flowing through the circuit.


      

Given values

R1 = 3 ohm

R2 = 6 ohm

V= 4.5 volt

R=?

 

Solution

We can see that the resistors of 3 ohm and 6 ohm are connected in parallel combination so the equivalent resistance R

 

       `1/R=  1/R_1 +1/R_2` 


       `1/R=  1/3+1/6`


       `1/R=  (2 +1 )/6=  3/6`

 `

    

        `R=   6/3=2 ohm`

    

      According to Ohm’s law


       `V=IR`

 

       `4.5 = I× 2`


       `I=   4.5/2=2.25 A` 

     

  22. You have been given the following circuit of resistors connected with a battery.

      


         Calculate

i.  total resistance of the circuit

ii. total current

iii.voltage across 5 ohm resistor


     Given  values

      `R_1` =  10 ohm

      `R_2`= 10 ohm

      `R_3`= 5 ohm

       V= 6 volt


     Solution 


    i. Total resistance

We can see that `R_1` and `R_2` are in parallel so the total resistance `R_A` 


    `1/R_A =  1/R_1 +  1/R_2` 


   `1/R_A =  1/10+  1/10`


    `1/R_A =  (1+1 )/10=  2/10`


    `R_A=  10/2=5 Ohm`


Now `R_A` and `R_3` are in series so the total resistance R

 

   `R =  R_A + R_3`


  `R = 5 + 5 =10 Ohm`


   ii. Total current 


    `I=  V/R=  6/10=0.6 A`


   iii. Voltage across 5 ohm  resistor


     `V_1= IR_1`


     `V_1 = 0.6 × 5` 


     `V_1`  = 3 volt 


   23. Find the equivalent resistance of the following circuit of resistors.

     

     Given values

     R1= 4Ohm

     R2 = 8Ohm

     R3 =8 Ohm

     R =?


    Solution


In the given circuit diagram we can see that R2 and R3 are series so


    RA  = R2 + R3


   RA = 8 + 8 =16 Ohm


Now the `R_A`  is parallel to `R_1` so the equivalent resistance R


    `1/R=1/R_1 +  1/R_A` 


    `1/R=1/4+  1/16`


    `1/R=(4+1)/16=5/16`


 `R=16/5=3.2` Ohm



    (i) Power

P=VI


     P = 2.5 ×0.65 = 1.625 W


   (ii).  Resistance 


    `R=V/I`


    `R=2.5/0.65=3.84` Ohm


No comments:

Post a Comment