All Solutions

Important

Tuesday, March 21, 2023

Theorem 10.6 Class 9 Maths Explanation with Proof

Today, we will discuss theorem 10.6 class 9 Maths which is related to Chapter 10 Circles Class 9 Mathematics. After understanding theorem 10.6, you can solve the exercise questions given in the NCERT book of Class 9 Maths.


 Theorem 10.6 Class 9

Equal chords of a circle (or of congruent circles) are equidistant from the centre (or centres)


Given 

A circle with centre O and two equal chords AB and PQ., i.e. AB=PQ.


To Prove

AB and PQ are equidistant from the centre O.


Construction 

Draw OM⊥AB and ON⊥PQ. Join OA, OB, OP and OQ.

Theorem 10.6 Class 9 Maths Explanation with Proof


Proof 

We know that a perpendicular from the centre to a chord bisects the chord.


`AM=MB=frac{1}{2} AB`          (∵OM⊥AB)


And  `PN=NQ= frac{1}{2} PQ`   (∵ON⊥PQ)


∵    chord AB=chordPQ                (given)


⇒  `frac{1}{2} AB=frac{1}{2} PQ`

 

Then AM=MB=PN=NQ


Now, in ∆OMA and ∆ONQ 


OA=OQ                            (Radii of the same circle)


AM=NQ                           (proved above)


∠OMA=∠ONQ                (each 90°)


∴∆OMA=∆ONQ         (By RHS congruence rule)


Then, OM=ON           (By CPCT)


Hence, PQ and AB are equidistant from the centre O.  

Hence proved


 Related Topics

1. Theorem 10.7

2. Theorem 10.5

No comments:

Post a Comment